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Abstract

A method for both identification and localization of structural damage is proposed and implemented on
a simply supported beam. The results are predicted with an analytical model and verified with an
experimental test set-up consisting of an aluminum beam with one actuator and one sensor, both
piezoelectrics. The method estimates the energy localized in bandwidth regions near resonance that are the
most sensitive to damage. The energy is estimated by power spectral density analysis and quantified by
means of its root mean square value. These values are combined with mode shapes to locate damage. The
method is evaluated with small masses used to simulate damage and or small cuts to simulate damage and
good agreement is obtained between experiments and analysis.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Structural damage detection can considerably increase safety and reduce maintenance costs.
The goal for damage detection is to identify damage at the earliest stage of development.
Numerous methods have been proposed and among them, dynamic response based approaches
are prominent. However, to date these methods have relatively poor sensitivity.
Cawley and Adams [1] were one of the first who published works that used frequency shifts to

detect damage. A more recent example of a similar approach can be found in Armon et al. [2], in
which the frequency shifts of a cantilever beam were ordered in a crescent numerical succession
and their indexes (ranks) were used to estimate the damage location. Narkis [5] proposed a closed
form solution of the damage localization problem using shifts in the first two natural frequencies
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for a simply supported beam under longitudinal and bending vibrations. Recently, Morassi [6]
extended the work of Narkis to include axially vibrating rods under generic boundary conditions.
Morassi showed that the problem is generally ill-posed because two cracks at different locations
produce similar changes in a pair of natural frequencies. However, in Ref. [6] it was shown that a
careful choice of the data could significantly reduce the ill conditioning of the diagnostic problem.
Morassi and Dilena [7] proposed a method that was able to detect a point mass in a beam and also
estimated the mass size. However, their method requires very accurate measurements and an
analytical solution that is not always available. Farrar et al. [8] used frequency shifts to identify
damage in a highway bridge and showed that the method was not sufficiently sensitive to detect
damage. In general, natural frequencies shift by only a few percent and therefore are relatively
insensitive to damage.
Mode shapes can also be used to identify and localize damage. A modal assurance criterion

(MAC) introduced by West [9] and its modified version (COMAC), introduced by Kim et al. [10],
along with numerous variations [3], have been proposed and tested in laboratory demonstrations.
However, Pandey et al. [11] showed that MAC and COMAC techniques were insensitive to
damage location for a cantilever and a simply supported beam. Pandey proposed monitoring
mode shape curvature changes to increase sensitivity with respect to MAC and COMAC
techniques. Although this approach detected and localized damage, it relied on numerical schemes
that produce relatively large errors when compared with other changes.
Strain energy methods have also been proposed to detect damage. A damage index [12], defined

by the ratio of strain energy between damaged and undamaged states, was used to detect damage.
Recently, Park et al. [13] used an FEMmodel to analyze a damage index and compared the results
with visual inspection of a I-40 highway damaged bridge. While moderately successful, many
predictions were not verified by inspection. These and other methods based on a damage index
parameter have been proposed as diagnostic tools with details that can be found in two extensive
reviews [3,4].
The method analytically and experimentally studied in this paper utilizes both frequency shifts

and mode shape changes to infer damage and location. Dynamic structural response is obtained
from piezoelectric point actuators and sensors placed on a simply supported beam. Narrow
bandwidths near resonant frequencies are chosen to maximize sensitivity. By using a Power
Spectral Density (PSD) analysis, the energy associated with the narrow bandwidths is evaluated
and then quantified by means of a Root Mean Square (RMS) value. The RMS obtained from the
undamaged structure is compared with the RMS of the damaged one. This process appears to
increase the sensitivity when compared with other methods reviewed in this paper. The RMS
changes are used to define a DLM index that can infer damage in the structure. This index is
however unable to localize the damage position. For this purpose, the RMS values are utilized in
combination with structural mode shapes to define a damage location function, DLðxÞ; that
locates both a point mass and a saw cut in the structure.

2. Analytical model

A simply supported beam is modelled with both bending and axial deformation. The governing
dynamic equations for the structure are obtained from an energetic formulation of the problem
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[14]. The beam’s kinetic and potential energy are expressed in terms of displacements
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where Uðx; z; tÞ and W ðx; z; tÞ are longitudinal and transversal displacements respectively while r
and E are the volume density and Young’s modulus of the structure.
The generalized Hamilton principle for a piezoelectric requires substituting the potential energy

with the electric enthalpy to include electroelastic coupled phenomenon [15]. The enthalpy can be
written as
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while the kinetic energy is
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In Eqs. (2) and (3), ra and %EE
a are the volume density and Young’s modulus of the actuator at

constant electric field, d31 is piezoelectric stress/charge coefficient, Dja is the applied voltage, Ee33 is
the piezoelectric material permittivity at constant strain and ta is the actuator thickness.
Eq. (2) could be used for defining the potential energy of the sensor as well. However, for the

sensor, the strain energy contribution to the enthalpy is much greater than the remaining electrical
and electromechanical terms that can be neglected. With these assumptions, the potential energy
for the sensor can be written as
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The kinetic energy of the sensor, instead, is analogous to expression (3) obtained for the actuator,
and is
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where rs and %EE
s are the volume density and Young’s modulus of the sensor at constant electric

field. The displacements Uðx; z; tÞ and W ðx; z; tÞ are considered continuous through the cross-
section and between beam-actuator and beam-sensor interfaces. The damaged area is represented
with different mass density and Young’s modulus while the displacements are assumed
continuous through the different regions. Bernoulli’s hypotheses are used and all shear effects
are neglected. In this assumption the displacements are written as

Uðx; z; tÞ ¼ uðx; tÞ � z
@wðx; tÞ

@x
; W ðx; z; tÞ � wðx; tÞ; ð6Þ

where uðx; tÞ and wðx; tÞ are the longitudinal and transverse displacements of the beam’s
neutral axis.
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The neutral axis and transverse displacements are approximated with a series expansion of
sinusoidal functions coincident with the beam mode shapes
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In this paper, 15 terms are included in each series expansion for a total of 30 terms. The
displacements of Eq. (7) are substituted back into the potential and kinetic energy terms defined in
Eqs. (1)–(5). By utilizing the Rayleigh–Ritz method [14] the equation of motions are recovered in
terms of the coefficients AlðtÞ and BkðtÞ of the series expansion and give

½M�f .Xg þ ½K�fXg ¼ fFgDja; fXg ¼
AlðtÞ

BkðtÞ

( )
; ð8Þ

where {X} is the generalized displacement vector, [M] and [K] are the generalized mass and
stiffness matrices, [F ] is the generalized forcing term recovered from the actuator and Dja is the
voltage input of the actuator.
The damping matrix is subsequently added to Eq. (8) by using the modal damping coefficients

(zi) for each mode shape obtained from test measurement

zi ¼
o2i � o1i

2oi

: ð9Þ

Here, oi is the natural frequency and o1i and o2i are the frequencies at �3 dB from the peak
values. The equivalent full viscous damping matrix (½D�d) is obtained as [14]

½D�d ¼ ½M�½F�½2oizi�½F�
T½M�; ð10Þ

where [f] is the modal matrix and [2oizi] is the diagonal modal damping matrix.
The equation of motion including damping is rearranged in a linear time invariant state space

form [16]

f’xg ¼ ½A�fxg þ ½B�Dja; fXg ¼ ½C��fxg; fxg ¼ fX^ ’Xg; ð11Þ

where the matrices ½A�; [B], and [C�] are assembled as follows:
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From Eq. (11), the series expansion coefficients are recovered and substituted back into Eqs. (7)
and (8) to obtain displacements. However, for our purpose, the voltage output from the sensor is
desired. For a capacitor, the voltage output is related to the current iðtÞ as

Djs ¼
1

Cs

Z
iðtÞ dt ð13Þ
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with Cs the capacitance value. The current iðtÞ for a piezoelectric sensor is expressed in terms of
strain as

iðtÞ ¼ e31

Z
Vs

@exðx; zS; tÞ
@t

dVS; ð14Þ

where exðx; zS; tÞ are the strains evaluated at the middle of the sensor thickness and the integral
is extended over the sensor volume Vs: The output sensor voltage Djs is obtained by
substituting Eq. (14) into Eq. (13). These two steps can be both included in a modified
matrix [C] of Eq. (11) such that the voltage Djs is recovered directly from the state space
formulation

f’xg ¼ ½A�fxg þ ½B�Dja; fDfsg ¼ ½C�fxg; ½C� ¼ b½C��; ð15Þ

where b is obtained from the integration process of Eq. (14).
The input–output (I/O) relationship, or transfer function, between actuator input voltage and

sensor output voltage in the frequency domain (o) is

HðoÞ ¼
Djs

Dja

¼ ½C�ðjo½I � � ½A�Þ�1½B�: ð16Þ

2.1. Power spectral density analysis

For a linear system, the output PSD, SyyðoÞ is defined as [15]

SyyðoÞ ¼ jHðoÞj2SxxðoÞ; ð17Þ

where SxxðoÞ is the input PSD. The area under SyyðoÞ=2p equals the average output power [17].
However, in our analysis, we are interested in the relative changes between input/output energies
in specific bandwidths. For historical reasons, this bandwidth-localized power is expressed by
means of Root Mean Square (RMS) defined as [15]

Root Mean Square ¼
1

2p

Z o2
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jHðoÞj2 do

� �1=2

; ð18Þ

where o1 and o2 are the band frequencies. In our analysis, we utilized the bandwidth between the
frequencies o1 and o2 positioned at 12 dB below the ith resonance frequency of the undamaged
structure. These RMS values are defined as ðRMSÞU and ðRMSÞD for undamaged and damaged
structure, respectively, and can be utilized to determine whether or not the structure is damaged
by the index

DLM ¼
XN

i¼1

ðRMSiÞU � ðRMSiÞD
ðRMSiÞU


; ð19Þ

where jðRMSiÞU � ðRMSiÞDj is the absolute value of the difference between the RMS of the ith
resonance modes of the undamaged and damaged structure. The ith term of the DLM index
represents the influence of damage on the ith mode shape. By summing all the contributions, a
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sensitive measure of damage can be developed. Therefore, this index can be utilized to assess damage
in the structure, however, it is unable to distinguish stiffness variations from mass variations.
Once the structure is identified as damaged by means of the DLM index, the damage position

along the structure can be estimated by introducing a damage location function, DLðxÞ; defined as

DLðxÞ ¼
XN

i¼1

ðRMSiÞU � ðRMSiÞD
ðRMSiÞU


� jjiðxÞj: ð20Þ

Eq. (20), in addition to the quantities previously defined, includes the function jjiðxÞj that is the
absolute value of the ith mode shape of the undamaged structure. The DLðxÞ function can be
interpreted as the sum of all the mode shapes, with each one weighted by the percentage change
caused by the damage. Damage influences a particular mode shape based on its location in the
structure. For example, if damage is at the anti-node of a mode shape, it strongly influences the
resonant frequency. On the contrary, the resonant frequency of a mode shape is not influenced by
damage positioned at one of its nodes. By summing the individual contribution at each mode
shape, the DLðxÞ function provides an indication of damage location.

3. Experimental set-up

The experimental set-up consisted of a simply supported aluminum beam with one actuator and
one sensor (piezoelectrics) bonded to the structure. A photograph of the test set-up is provided in
Fig. 1. The beam width and thickness were 27.5 and 2.45mm, respectively, while its length was
771mm. Each support was made of two sharp blades intercalated in two slots machined in the
upper and lower surface of the beam. Both supports were bolted to a vibration isolation table. The
piezoelectric sensor and actuator utilized were PZT 5H with dimensions of 15mm length, 6.7mm
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width and 0.6mm thickness. The actuator was bonded on the upper surface at 394mm from the
left edge of the beam while the sensor was bonded on the lower surface at 546mm from the left
edge as shown in Fig. 1. These two locations were chosen such that all of the structure’s mode
shapes were excited by the actuator and sensed by the sensor without regard to the damage
studied. The material properties of the beam, sensor and actuator are listed in Table 1.
The I/O frequency response was obtained using a white noise input signal produced by a

Wavetek 10MHz DDs Model 29. The white noise frequency range of 0–180 kHz was filtered to
10 kHz by a Krohn-Hite (KH) model 3382, 8 Pole Butterworth/Bessel. A Burleigh PZ 150M
0–150V output voltage amplifier was used to amplify the signal to the actuator. The sensor output
was amplified with a Kistler type 5010B charge amplifier and subsequently filtered in the KH
filter. The input and output signals were recorded with a Textronix TDS 460A, 350MHz
digitizing oscilloscope. Up to 20k points were recorded in the oscilloscope for both the input and
output signals. At least 20 acquisitions were performed for each measurement and the sampling
rate used was 10k sample/s. that produced a frequency resolution of 0.5Hz. Hanning windows
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Table 1

Material properties

Property Beam Sensor/actuator

EE (N/m2) 68.9� 109 42� 109

r (kg/m3) 2670 7550

Ee (C2/Nm2) — 1750

d31 (m/V) — 190� 10�12
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Fig. 2. Frequency response 0–2950Hz: analytical (a) vs. experimental (b).
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were used to reduce leakage effects while an overlapping technique was employed to obtain more
data sets. The data were processed in the frequency domain for each window and the results were
averaged. More than 50 averages were used to obtain the desired spectrum.
In Fig. 2, the spectra obtained from the analytical model and measured data are compared up

to approximately 3 kHz. From the figure, it can be seen that relatively good agreement between
the data and the analytical model were obtained. In Table 2 are also listed the first 16 measured
frequencies compared with the model predictions. The natural frequencies from 1 to 15 are
relative to bending modes and the first longitudinal frequency is measured at 3034.5Hz. It can be
seen that the error between the estimated and measured frequencies was approximately 2% or less
except for the first and sixteenth frequencies. In particular, the first measured frequency differed
by approximately 1Hz from the estimated one, resulting in an error of 7.7%. Based on these
results, in our model only the first 15 mode shapes were included.

4. Results

In the analytical section, we suggested that the RMS values of the PSD could be used to identify
damage. A numerical example is provided to illustrate this concept. The damage was simulated by
adding a 4 g mass positioned on top of the beam at its mid point. This mass was equivalent to
approximately 2% of the entire mass of the structure. Although the mass does not represent
actual damage, it can be positioned at multiple locations to verify the method, where actual
damage cannot (i.e., one damage per test). Fig. 3 shows the resulting frequency response spectra
obtained for the undamaged and damaged case in the frequency range between 1600 and 2300Hz,
thereby including the 12th and 13th flexural mode shapes. The ordinate of the plot is expressed in
decibels. It is apparent that with the mass positioned at the mid-point of the beam, only the
symmetric modes, such as the 13th, were affected while the antisymmetric ones, such as the 12th,
were essentially unchanged. The frequency shift of the 13th mode was calculated to be 1.6% of the
undamaged natural frequency. The magnitude of this value is regarded as relatively insensitive
indicator of damage.
By utilizing the RMS values obtained in bandwidth near resonance, the sensitivity was

increased. From Eq. (18), ðRMSÞU and ðRMSÞD values were obtained for both the undamaged
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Table 2

Measured natural frequencies compared with the analytically predicted ones

Natural

frequency

Analytical

(Hz)

Measured

(Hz)

Error

(%)

Natural

frequency

Analytical

(Hz)

Measured

(Hz)

Error

(%)

1 12.06 13.0 �7.7 9 976.55 954.5 2.3

2 48.16 49.0 �1.7 10 1204.15 1182.0 1.8

3 108.59 106.5 1.9 11 1458.34 1439.5 1.3

4 192.70 189.0 1.9 12 1733.61 1729.5 0.3

5 301.55 297.5 1.3 13 2035.66 2036.5 —

6 433.51 433.5 — 14 2359.52 2346.5 0.6

7 591.03 585.0 1.0 15 2708.68 2672.0 1.4

8 770.66 762.0 1.1 16 3188.1 3034.5 4.8
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and damaged case. The percentage change of ðRMSÞU with respect of ðRMSÞD was calculated to
be 84.4% for the 13th mode of Fig. 3. This is a much greater value when compared to the 1.6%
frequency shift obtained previously, thus indicating that this technique is a sensitive measure of
damage.
Fig. 4 shows the values of ðRMSÞU and ðRMSÞD obtained for all of the 15 mode shapes

included in the analysis. Since the 13th mode presented the largest RMS change, the reported
RMS values in the ordinate of the plot were normalized with respect to its value. As can be
observed, large RMS variations occurred mainly in the symmetric (odd) modes such as the 5th,
9th, 11th, 13th and 15th. The DLM index (Eq. (19)) was calculated for this case and yielded
DLM ¼ 771:9%: This is considerably large value that can be utilized to determine damage in the
structure.
The localization of the damage was obtained with the DLðxÞ function defined in Eq. (20). For

this case, the function was calculated and plotted in Fig. 5. The ordinate of the plot indicates the
DLðxÞ value normalized with respect to its peak value while the abscissa represents the length of
the beam in meters. It is immediately apparent that the maximum of the DLðxÞ function coincides
with the location of the 4 g mass. The difference between this dominant peak and the mean value
was calculated to be approximately 35%.
While the previous numerical example uses a mass positioned at the mid-point of the structure,

the following one incorporates a smaller mass positioned at an off center location. The analytical
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1600–2280Hz: (I) 12th natural frequency, (II) 13th natural frequency, (a) 12 dB bandwidth region, (b) RMS value

before damage (linear scale), (c) RMS value after damage (linear scale).
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Fig. 5. Analytical data. Normalized damage location function, DLðxÞ; calculated for 4 g mass damage. (a) Symmetric

axis, (b) DLðxÞ function, (c) DLðxÞ mean value, (d) mass position, x ¼ L=2; (e) simply supported beam scheme.
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method was evaluated on a beam containing a 2 g mass positioned at 244mm from the left
support. The mass was equivalent to approximately 1% of the entire structure mass. In Fig. 6, the
ðRMSÞU and ðRMSÞD values obtained from our computational analysis are plotted for all of the
15 mode shapes considered. The reported RMS values in the ordinate were normalized with
respect to the ðRMSÞU value of the 13th mode which had the greatest value. The most prominent
percent changes of ðRMSÞU with respect to ðRMSÞD were observed for the 5th, 8th and 11th
modes and were calculated to be 65.7% and 70.7% and 68.3%, respectively. The DLM index was
DLM ¼ 517:7% which, is less than the DLM index obtained for the case of 4 g mass.
In order to locate the damage, the damage location function DLðxÞ was calculated for this case

and is plotted in Fig. 7. As usual, the DLðxÞ function was normalized with respect to its peak value
and plotted vs. the entire beam length. It can be seen that this scenario produced two dominant
peaks symmetric with respect to the mid-point of the structure and one of which was coincident
with the mass position (x ¼ 244mm). The symmetry occurred because the two locations produced
equal changes to the structure’s mode shapes. The percent difference between the dominant peak
and the mean value was considerably high and was calculated to be approximately 30%.
Experimental data for the beam containing a 2 g mass positioned at 244mm from the left

support were also generated and the RMS changes obtained for all the 15 mode shapes are shown
in Fig. 8. The reported values in the ordinate are normalized with respect to the ðRMSÞU value of
the 12th mode which produced the largest value. From the figure, the most prominent percent
changes of ðRMSÞU with respect to ðRMSÞD were observed for the 8th and 11th modes and were
calculated to be 41.1% and 35.7%, respectively. By comparing the analytical data reported in
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Fig. 6, with the experimental data reported in Fig. 8, one can see that the RMS changes of the 8th
and 11th modes were predicted by the model and verified experimentally, while the RMS change
predicted for the 5th mode was not verified by experimental data. The DLM index calculated
from measured data yielded DLM ¼ 416:4% while numerical simulation predicted DLM ¼
517:7%: These differences indicated a decrease in sensitivity of our experimental data when
compared with numerical analysis.
The normalized damage location function DLðxÞ from experimental data using the 2 g mass,

was also calculated and is presented in Fig. 9. From the figure, it can be seen that, analogously to
the numerical simulation, the DLðxÞ function produced two identical symmetric peaks, one of
which was coincident with the mass position. The percent difference between the prominent peak
and the mean value is approximately 25%, which compares well with the analytical value of 30%.
However, in Fig. 9, the next dominant peak is approximately 10% below the prominent peak and
although this margin is well above the experimental error, the 2 g mass could be regarded as
approaching the threshold level of identifiable damage.
While the previous examples relied on adding mass to simulate damage, we also investigated the

effect of a saw cut of 3.5mm deep and 1mm wide made in one side of the beam at 239mm from
the left support. This cut represented 12.7% of the beam width. It is known that these kinds of
cuts produce insignificant variation in resonant frequencies of the structure (see Ref. [8]). In the
current case, the frequency response remained substantially unchanged as seen from Fig. 10,
which illustrates the transfer functions obtained experimentally between 250 and 500Hz for the
damaged and undamaged beam. This range of frequency included the 5th and 6th resonant
frequencies. From the figure, one can see that the two natural frequencies did not shift
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substantially and that the only significant changes were observed in the peak amplitudes. The
RMS difference between undamaged and damaged structure for the 5th and 6th modes shown,
were calculated to be 15.1% and 10.9%, respectively. We highlight the fact that, for this scenario,
frequency shift analysis is substantially less sensitive than the RMS analysis proposed. The DLM
index calculated for all of the 15 natural frequencies for this scenario yielded DLM ¼ 172:41%:
The damage location function DLðxÞ was also obtained from the experimental data and is

plotted in Fig. 11. As usual, the DLðxÞ function was normalized with respect to its maximum
value. As can be seen, one of the two symmetric DLðxÞ maxima coincides with the position of the
saw cut, thereby locating the damage. However, from the figure it can be seen that the other
prominent peaks have amplitudes that are comparable with the amplitude of the peak locating the
cut. Thus, we considered the 3.5mm saw cut as the threshold value of damage detection for the
proposed method.

5. Conclusion

A method for identification and localization of structural damage is implemented analytically
and experimentally for a simply supported beam. The method focuses on bandwidth-localized
energy that is most sensitive to damage. The sensitivity increases considerably when compared
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Fig. 10. Experimental data. Frequency response of undamaged beam and 3.5� 1mm saw cut damage made at

x ¼ 239mm. (I) 5th natural frequency, (II) 6th natural frequency, (a) damaged structure response, (b) undamaged

structure response.
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with frequency shifts. In order to simulate damage, two small masses, 4 and 2 g, representing 2%
and 1%, respectively, of the entire structural mass, are added to the structure in two distinct
cases and localized. In particular, the 2 g mass is localized by using experimental data confirming
the analytical prediction. In addition to mass-type damage, a saw cut damage created on one edge
of the structure is analyzed by using experimental data. Although this scenario was revealed to be
particularly challenging the saw cut was detected and localized.
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